Superconducting qubit network with controllable nearest-neighbour coupling
نویسندگان
چکیده
We investigate the design and functionality of a network of loopshaped charge qubits with switchable nearest-neighbour coupling. The qubit coupling is achieved by placing large Josephson junctions (JJs) at the intersections of the qubit loops and selectively applying bias currents. The network is scalable and makes it possible to perform a universal set of quantum gates. The coupling scheme allows gate operation at the charge degeneracy point of each qubit, and also applies to charge-phase qubits. Additional JJs included in the qubit loops for qubit readout can also be employed for qubit coupling. 1 Author to whom any correspondence should be addressed. New Journal of Physics 7 (2005) 178 PII: S1367-2630(05)96417-3 1367-2630/05/010178+23$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 2 Institute of Physics DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
منابع مشابه
Spin-orbit qubit on a multiferroic insulator in a superconducting resonator
We propose a spin-orbit qubit in a nanowire quantum dot on the surface of a multiferroic insulator with a cycloidal spiral magnetic order. The spiral exchange field from the multiferroic insulator causes an inhomogeneous Zeeman-like interaction on the electron spin in the quantum dot, producing a spin-orbit qubit. The absence of an external magnetic field benefits the integration of such a spin...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Controllable coupling of superconducting qubits and implementation of quantum gate protocols
The concept of a quantum computer was invented in the beginning of the 1980s as a quantum generalization of the reversible classical computer. After discoveries in the middle of the 1990s of quantum algorithms, which would solve some problems considered intractable for classical computers, the field of quantum computing has developed rapidly. A wide range of quantum systems are investigated for...
متن کاملDephasing of a superconducting qubit induced by photon noise.
We have studied the dephasing of a superconducting flux qubit coupled to a dc-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which...
متن کاملSynthesis of maximally entangled mixed states and disentanglement in coupled Josephson charge qubits
We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Jo...
متن کاملScalable quantum computing model in the circuit-QED lattice with circulator function
We propose a model for a scalable quantum computing in the circuit-quantum electrodynamics(QED) architecture. In the Kagome lattice of qubits three qubits are connected to each other through a superconducting three-junction flux qubit at the vertices of the lattice. By controlling one of the three Josephson junction energies of the intervening flux qubit we can achieve the circulator function t...
متن کامل